:::note Binet’s formula
From the generating function, we have
n=0∑∞Fnxn=1−x−x2x=x+x2(1+x)+x3(1+x)2+⋯+xk+1(1+x)k+…
on comparing coefficients of xn on both sides,
Fn=k=0∑⌊2n−1⌋(kn−k−1)
:::
:::note Property
From the generating function, we have
n=0∑∞Fnxn=1−x−x2x=x+x2(1+x)+x3(1+x)2+⋯+xk+1(1+x)k+…
on comparing coefficients of xn on both sides,
Fn=k=0∑⌊2n−1⌋(kn−k−1)
:::