Skip to content

Dirichlet Convolution

If f,g:NCf , g : \mathbb{N}\to\mathbb{C} are two arithmetic functions from the positive integers to the complex numbers, the Dirichlet convolution f ∗ g is a new arithmetic function defined by:

(fg)(n) = dnf(d)g ⁣(nd) = ab=n ⁣f(a)g(b)(f*g)(n) \ =\ \sum_{d\,\mid \,n} f(d)\,g\!\left(\frac{n}{d}\right) \ =\ \sum_{ab\,=\,n}\!f(a)\,g(b)
  • Commutative: fg=gff * g = g * f
  • Associative: (fg)h=f(gh)(f * g) * h = f * (g * h)
  • Distributive over pointwise addition: f(g+h)=fg+fhf * (g + h) = f * g + f * h
    • Pointwise addition: f+gf + g is defined by (f+g)(n)=f(n)+g(n)(f + g)(n) = f(n) + g(n)
  • Multiplicative Identity: fε=εf=ff * \varepsilon = \varepsilon * f = f
    • ε\varepsilon is the unit function defined as
    ε(n)={1,if n=10,if n1\varepsilon(n) = \begin{cases} 1, & \text{if } n=1 \\ 0, & \text{if }n \neq 1 \end{cases}
  • Multiplicative Inverse: for each ff having f(1)0f(1)\neq 0, there exists an arithmetic function f1f^{-1} with ff1=εf*f^{-1}=\varepsilon, called the Dirichlet inverse of ff
  • ε\varepsilon - Unit function

  • μ\mu - Mobius function

  • 1μ=ε1 * \mu = \varepsilon