Skip to content

Introduction to Abstract Algebra

:::note Resources

:::

A GROUP is a set in which you can perform one operation with some nice properties. A RING is a set equipped with two operations, called addition and multiplication. A RING is a GROUP under addition and satisfies some of the properties of a group for multiplication. A FIELD is a GROUP under both addition and multiplication.

A group is a set G\mathcal{G} (i.e. ) and satisfies:

  1. Closure (called G\mathcal{G} is closed under the operation \bullet )
a,bG  abG\forall a, b \in \mathcal{G} \; a \bullet b \in \mathcal{G}
  1. Identity
eG  s.t.  aG  ea=ae=a\exists e \in \mathcal{G} \; \mathrm{s.t.} \; \forall a \in \mathcal{G} \; e \bullet a = a \bullet e = a
  1. Inverse (ee is the identity above)
aG  bG  s.t.  ab=ba=e\forall a \in \mathcal{G} \; \exists b \in \mathcal{G} \; \mathrm{s.t.} \; a \bullet b = b \bullet a = e
  1. Associativity
a,b,cG  a(bc)=(ab)c\forall a, b, c \in \mathcal{G} \; a \bullet (b \bullet c) = (a \bullet b) \bullet c

Abelian Group: A group is said to be “abelian” if

a,bG  ab=ba\forall a, b \in G \; a \bullet b = b \bullet a
  • Z/nZ\mathbb{Z}/n\mathbb{Z} - fancy notation for integersmodn\mathrm{integers} \mod n under modulo addition.
  • (Z/nZ)×(\mathbb{Z}/n\mathbb{Z})^{\times} - fancy notation for integersmodn\mathrm{integers} \mod n which are relatively prime to n under multiplication.
  • Z\mathbb{Z} - integers under addition. Groups don’t have to be finite.

A ring is a set R\mathcal{R} (i.e. ) and satisfies:

  1. R\mathcal{R} is closed under two operations ++ and ×\times, i.e.
a,bR  a+bRanda,bR  a×bR\forall a, b \in \mathcal{R} \; a + b \in \mathcal{R} \\\textrm{and}\\ \forall a, b \in \mathcal{R} \; a \times b \in \mathcal{R}
  1. R\mathcal{R} is an abelian group under ++

  2. Associativity of ×\times

a,b,cR  a×(b×c)=(a×b)×c\forall a, b, c \in \mathcal{R} \; a \times (b \times c) = (a \times b) \times c
  1. Distributive properties
a,b,cR  a×(b+c)=(a×b)+(a×c)anda,b,cR  (b+c)×a=(b×a)+(c×a)\forall a, b, c \in \mathcal{R} \; a \times (b + c) = (a \times b) + (a \times c) \\\textrm{and}\\ \forall a, b, c \in \mathcal{R} \; (b + c) \times a = (b \times a) + (c \times a)
  • Z/nZ\mathbb{Z}/n\mathbb{Z} under modulo addition and modulo multiplication.
  • Z\mathbb{Z} - integers under addition and multiplication.
  • Z[x]\mathbb{Z}[x] - fancy notation for all polynomials with integer coefficientss under polynomial addition and polynomial multiplication.

A field is a set F\mathcal{F} (i.e. ) and satisfies:

  1. F\mathcal{F} is closed under two operations ++ and ×\times, i.e.
a,bF  a+bFanda,bF  a×bF\forall a, b \in \mathcal{F} \; a + b \in \mathcal{F} \\\textrm{and}\\ \forall a, b \in \mathcal{F} \; a \times b \in \mathcal{F}
  1. F\mathcal{F} is an abelian group under ++

  2. Fe\mathcal{F} - {e} (e is the identity under ++) is an abelian group under ×\times

  • For a prime pp, Z/pZ\mathbb{Z}/p\mathbb{Z} is a field under modulo addition and modulo multiplication, since (sometimes Fp\mathbb{F}_{p} is used to emphasize this group under these operations)

    • Z/pZ\mathbb{Z}/p\mathbb{Z} is a group under modulo addition
    • (Z/pZ){0}=(Z/pZ)×(\mathbb{Z}/p\mathbb{Z}) - \{0\} = (\mathbb{Z}/p\mathbb{Z})^{\times} is a group under modulo multiplication
  • Q\mathbb{Q} (rational numbers), R\mathbb{R} (real numbers), C\mathbb{C} (complex numbers) are all infinite fields under the regular addition and multiplication.

  • Note that Z\mathbb{Z} (integers) are NOT a field under regular addition and multiplication.

  • If nn is not a prime, then Z/nZ\mathbb{Z}/n\mathbb{Z} is not a field, since (Z/nZ){0}=(Z/nZ)×(\mathbb{Z}/n\mathbb{Z}) - \{0\} = (\mathbb{Z}/n\mathbb{Z})^{\times}. There are, in general, lots of other elements than 00 which are not relatively prime to nn and hence have no inverse under modulo multiplication.